
Oracle SQL Tuning Basics Tips and
Tricks

Description:
 BISP is committed to provide BEST learning material to the
beginners and advance learners. In the same series, we have
prepared a complete end-to end Hands-on Guide SQL optimization
tips. The document focuses on top 21 tics for SQL optimization. See
our youtube collections for more details. Join our professional
training program and learn from experts.

History:
Version Description Change Author Publish Date
0.1 Initial Draft Kuldeep Mishra 12th Aug
2011
0.1 Review#1 Amit Sharma 18th Aug 2011

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 1

Contents
Contents.. 2

Tuning Tips#1..3

Tuning Tips#2..4

Tuning Tips#3..4

Tuning Tips#4..5

Tuning Tips#5..6

Tuning Tips#6 ...6

Tuning Tips#7..8

Tuning Tips#8..11

Tuning Tips#9..12

Tuning Tips#10..13

Tuning Tips#11..15

Tuning Tips#12..16

Tuning Tips#13..17

Tuning Tips#14..17

Tuning Tips#15 ...18

Tuning Tips#16 ...18

Tuning Tips#17..19

Tuning Tips#18..19

Tuning Tips#19..20

Tuning Tips#20..21

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 2

Objective: SQL Tuning top 20 Rules for Oracle SQL beginners and intermediate
learners.

Oracle SQL Tuning Tips
 Consideration when writing an SQL statement is that it returns a correct result. The
second is that it be the most efficient for a given situation. You can use many different
SQL statements to achieve the same result. It is often the case that only one statement
will be the most efficient choice in a given situation.
Remember that processing SQL is a sequence of Parse (syntax check and object
resolution), Execution (required reads and writes), and Fetch (row results retrieved,
listed, sorted, and returned). SQL “tuning” consists, quite simply, of reducing one or
more of them.
 Note: generally Parse is the greatest time and resource hog. Parse overhead can be
minimized by the use of Procedures, Functions, Packages, Views, etc.
Inadequate performance can have a significant cost impact on your business. A poor
performing system and application can result in customer dissatisfaction, reduced
productivity, and high costs. It is absolutely critical that the system’s performance is
operating at its peak levels.
Following are some general tips that often increase SQL statement efficiency.
Being general they may not apply to a particular scenario.

SQL Tuning Top 20 Tics
Tuning Tips#1
1) The sql query becomes faster if you use the actual columns names in SELECT
statement instead of than '*'.
SELECT Employee_code,First_Name,Last_Name,Hire_Date_Hired, from Employee;

Instead of :
SELECT * from Employees;

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 3

Tuning Tips#2
2) HAVING clause is used to filter the rows after all the rows are selected. It is just like a
filter. Do not use HAVING clause for any other purposes.
For Example: Write the query as

SELECT employee_code,COUNT(employee_code),SUM(salary),AVG(salary) FROM
employee_summary WHERE employee_code!=10014 AND employee_code!=10021
GROUP BY employee_code;

Instead of:
SELECT employee_code,COUNT(employee_code),SUM(salary),AVG(salary) FROM
employee_summary GROUP BY employee_code Having employee_code!=10014 AND
employee_code!=10021 ;

Tuning Tips#3
 Sometimes you may have more than one subqueries in your main query. Try to
minimize the number of subquery block in your query.
For Example: Write the query as
SELECT employee_code,First_name, last_name, date_hired from EMPLOYEE WHERE
(employee_code)=(SELECT MAX(employee_code) from EMPLOYEE)
AND termination_code=150;

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 4

Instead of:
SELECT employee_code,first_name, last_name, date_hired from EMPLOYEE WHERE
employee_code =(SELECT MAX(employee_code) from EMPLOYEE) AND
termination_code=150;

Tuning Tips#4
Use operator EXISTS, IN and table joins appropriately in your query.

a) Usually IN has the slowest performance.
b) IN is efficient when most of the filter criteria is in the sub-query.
c) EXISTS is efficient when most of the filter criteria is in the main query.
For Example: Write the query as

SELECT * from EMPLOYEE A WHERE EXISTS (SELECT * from Employee_Expense_Detail
B WHERE b.employee_code= a.employee_code);

Instead of :
SELECT * from EMPLOYEE A WHERE employee_code IN(SELECT employee_code from
Employee_Expense_Detail);

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 5

Tuning Tips#5
Use EXISTS instead of DISTINCT when using joins which involves tables having one-to-
many relationship.
For Example: Write the query as
SELECT e.employee_code,e.first_name,e.last_name,e.date_hired from EMPLOYEE E
WHERE EXISTS (SELECT expense_total from EMPLOYEE_EXPENSE_DETAIL D WHERE
d.employee_code=e.employee_code);

Instead of:
SELECT DISTINCT e.employee_code,e.first_name,e.last_name,e.date_hired from
EMPLOYEE E,EMPLOYEE_EXPENSE_DETAIL D WHERE
d.employee_code=e.employee_code;

Tuning Tips#6
Try to use UNION ALL in place of UNION.
For Example: Write the query as
SELECT product_color_code from product Union All Select product_color_code from
product_color_lookup;

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 6

Instead of:
SELECT product_color_code from product Union Select product_color_code from
product_color_lookup;

For Example: Write the query as
SELECT product_brand_code ,product_brand_en AS product_brand_color_en
FROM PRODUCT_BRAND UNION All SELECT product_color_code ,product_color_en AS
product_brand_color_en from PRODUCT_COLOR_LOOKUP;

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 7

Instead of:
SELECT product_brand_code ,product_brand_en AS product_brand_color_en
FROM PRODUCT_BRAND UNION SELECT product_color_code ,product_color_en AS
product_brand_color_en from PRODUCT_COLOR_LOOKUP;

Tuning Tips#7
Beware of WHERE clauses which do not use indexes at all. Even if there is an index
over a column that is referenced by a WHERE clause included in this section, Oracle will
ignore the index. All these WHERE clause can be re-written to use an index while
returning the same values. In other words, Do not perform operations on database
objects referenced in the WHERE clause:

SELECT order_number,product_number,unit_sale_price from order_details WHERE
unit_sale_price>1000;

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 8

Rather Than,
SELECT order_number,product_number,unit_sale_price from order_details WHERE
unit_sale_price!=1000;
USE:
SELECT First_Name,Last_Name,Date_Hired,Email from employee WHERE first_name
LIKE 'Al%';

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 9

Rather Than,
SELECT First_Name,Last_Name,Date_Hired,Email from employee WHERE
SUBSTR(first_name,1,2)='Al';
USE:
SELECT sales_year,branch_code,unit_cost from product_forecast WHERE unit_cost >5;

Instead of :
SELECT sales_year,branch_code,unit_cost from product_forecast WHERE unit_cost
NOT= 5;
USE:
SELECT sales_year,retailer_name,product_brand_code,sales_target from sales_target
WHERE sales_target<2000;

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 10

Instead of :
SELECT sales_year,retailer_name,product_brand_code,sales_target from sales_target
WHERE sales_target + 3000<5000;
USE:
SELECT course_code,course_days,course_cost from training WHERE
course_name_en='Time Management' AND course_name_id='Manajemen Waktu';

Instead of :
SELECT course_code,course_days,course_cost from training WHERE course_name_en ||
course_name_id= 'Time Management Manajemen Waktu';

Tuning Tips#8
Don’t forget to tune views. Views are SELECT statements and can be tuned in just the
same way as any other type of SLECT statement can be. All tuning applicable to any
SQL statement are equally applicable to views.
Avoid including a HAVING clause in SELECT statements. The HAVING clause filters
selected rows only after all rows have been fetched. Using a WHERE clause helps

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 11

reduce overheads in sorting, summing, etc. HAVING clauses should only be used when
columns with summary operations applied to them are restricted by the clause.
USE:
SELECT retailer_name from order_header WHERE retailer_name!='Grapevine Golf' AND
retailer_name!='Backcountry Discovery' GROUP BY retailer_name;

Instead of :
SELECT retailer_name from order_header GROUP BY retailer_name HAVING
retailer_name!='Grapevine Golf' AND retailer_name!='Backcountry Discovery';

Tuning Tips#9
Minimize the number of table lookups (subquery blocks) in queries, particularly if our
statements include subquery SELECTs or multicolumn UPDATEs.
USE:
SELECT inventory_year,unit_cost from inventory_levels WHERE
product_number=(SELECT MAX(product_number) from product) AND
average_unit_cost>8.5

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 12

Tuning Tips#10
When writing a sub-query (a SELECT statement within the WHERE or HAVING clause of
another SQL statement):

i) Use a correlated (refers to at least one value from the outer query) sub-query
when the return is relatively small and/or other criteria are efficient i.e. if the
tables within the sub-query have efficient indexes.
ii) Use a non-correlated (does not refer to the outer query) sub-query when
dealing with large tables from which you expect a large return (many rows)
and/or if the tables within the sub-query do not have efficient indexes.
iii) Ensure that multiple sub-queries are in the most efficient order.
iv) Remember that rewriting a sub-query as a join can sometimes increase
efficiency.
v) When doing multiple table joins consider the benefits/costs for each of EXISTS,
IN, and table joins. Depending on your data one or another may be faster.
Note: IN is usually the slowest.

For Example: Write the query as
SELECT * from EMPLOYEE A WHERE EXISTS (SELECT * from Employee_Expense_Detail
B WHERE b.employee_code= a.employee_code);

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 13

Instead of :
SELECT * from EMPLOYEE A WHERE employee_code IN(SELECT employee_code from
Employee_Expense_Detail);
vi)Use EXISTS instead of DISTINCT when using joins which involves tables having one-
to-many relationship.
For Example: Write the query as
SELECT e.employee_code,e.first_name,e.last_name,e.date_hired from EMPLOYEE E
WHERE EXISTS (SELECT expense_total from EMPLOYEE_EXPENSE_DETAIL D WHERE
d.employee_code=e.employee_code);

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 14

Instead of:
SELECT DISTINCT e.employee_code,e.first_name,e.last_name,e.date_hired from
EMPLOYEE E,EMPLOYEE_EXPENSE_DETAIL D WHERE
d.employee_code=e.employee_code;

Tuning Tips#11
Consider using DECODE to avoid having to scan the same rows repetitively or join the
same table repetitively. Note, DECODE is not necessarily faster as it depends on your
data and the complexity of the resulting query. Also, using DECODE requires you t
change your code when new values are allowed in the field.

SELECT product_brand_code,DECODE(Product_Brand_Code,700,'Ramond' ,701,'Allen
Solly' ,702,'Club Fox',703,'Peter England') result from Product_Brand;

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 15

Tuning Tips#12
Oracle automatically performs simple column type conversions(or casting) when it
compares columns of different types. Depending on the type of conversion, indexes
may not be used. Make sure you declare your program variables as the same type as
your Oracle columns, if the type is supported in the programming language you are
using.
USE:
SELECT order_detail_code,order_number,ship_date,product_number,unit_sale_price
from order_details WHERE order_detail_code='1000644';

HERE if order_detail_code indexed numeric, then after implicit conversion query will
be:

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 16

SELECT order_detail_code,order_number,ship_date,product_number,unit_sale_price
from order_details WHERE order_detail_code=To_Number('1000644');

Thus, index is used in this case.
Instead of:
SELECT order_detail_code,order_number,ship_date,product_number,unit_sale_price
from order_details WHERE order_type=121;
HERE if order_type is indexed varchar2, then after implicit conversion query will be:
SELECT emp_no, emp_name, sal FROM order_details WHERE TO_NUMBER(order_type)
= 121;
Thus, index will not be used in this case.

Tuning Tips#13
 The most efficient method for storing large binary objects, i.e. multimedia objects, is to
place them in the file system and place a pointer in the DB.

Tuning Tips#14
 B-Tree Indexes do not store entries for NULL, so IS NULL is not indexable, but IS NOT
NULL is indexable and thus if a huge table contains very few not null values then you
should go for B-Tree indexes. On the other hand bitmap indexes support IS NULL
condition.

SELECT product_number,base_product_number,product_type_code, introduction_date,
discontinued_date from product WHERE discontinued_date IS NOT NULL;

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 17

Avoid using functions on indexed columns unless a function-based index is created; as
it leads to full table scan even though index exists on the column.

Tuning Tips#15
Avoid using the following:
i)Boolean operators >, <, >=, <=, IS NULL, IS NOT NULL
ii)NOT IN, !=
iii)Like ‘%pattern’, not exists
iv)Calculations on unindexed columns or (use union instead)
v)Having (use a WHERE clause instead when appropriate)

Tuning Tips#16
Do use the following:

i)Enable aliases to prefix all columns
ii)Place indexed columns higher in the WHERE clause
iii)Use SQL Joins instead of using sub-queries
iv)Make the table with the least number of rows, the driving table, by
making it first in the FROM clause

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 18

Tuning Tips#17
Other important points for SQL Tuning
i)Establish a tuning environment that reflects your production database

ii)Establish performance expectations before you begin
iii)Always Design and develop with performance in mind
iv)Create Indexes to support selective WHERE clauses and join conditions
v)Use concatenated indexes where appropriate
vi)Consider indexing more than you think you should, to avoid table lookups
vii)Pick the best join method
viii)Nested loops joins are best for indexed joins of subsets
ix)Hash joins are usually the best choice for “big” joins
x)Pick the best join order
xi)Pick the best “driving” table
xii)Eliminate rows as early as possible in the join order
xiii)Use bind variables. Bind variables are key to application scalability
xiv)Use Oracle hints where appropriate
xv)Compare performance between alternative syntax for your SQL statement
xvi)Consider utilizing PL/SQL to overcome difficult SQL tuning issues
xvii)Consider using third party tools to make the job of SQL tuning easier

Performing these steps is easy and provides a tremendous benefit and performance
boost. Follow these simple steps and you can increase your system performance.

Tuning Tips#18
Using Function-based Indexes (FBI)
 In almost all cases, the use of a built-in function like to_char, decode, substr, etc. in an
SQL query may cause a full-table scan of the target table. To avoid this problem, many
Oracle DBAs will create corresponding indexes that make use of function-based
indexes. If a corresponding function-based index matches the built-in function of the
query, Oracle will be able to service the query with an index range scan thereby
avoiding a potentially expensive full-table scan.
 The following is a simple example. Suppose the DBA has identified a SQL statement
with hundreds of full-table scans against a large table with a built-in function (BIF) in
the WHERE clause of the query. After examining the SQL, it is simple to see that it is
accessing a customer by converting the customer name to uppercase using the upper
BIF.

SELECT Upper(p.product_name),o.unit_sale_price from product_name_lookup
p,order_details o WHERE p.product_number=o.product_number;

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 19

The table access full product option confirms that this BIF not using the existing index
on the product_name column. Since a matching function-based index may change the
execution plan, a function-based index can be added on upper(product_name).
Create index upper_product_name on product_name_lookup(upper(product_name))
pctfree 10 storage (initial 128k next 128k maxextents 2147483645 pctincrease 0);

 It can be risky to add indexes to a table because the execution plans of many queries
may change as a result. This is not a problem with a function-based index because
Oracle will only use this type of index when the query uses a matching BIF.

Tuning Tips#19
Using Temporary Tables
The prudent use of temporary tables can dramatically improve Oracle SQL
performance. The following example from the DBA world can be used to illustrate this
concept. The query could be formulated as an anti-join with a noncorrelated subquery
as shown here:

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 20

Tuning Tips#20
Removing full-table scans with Oracle Text
One serious SQL performance problem occurs when the SQL LIKE operator is used to
find a string within a large Oracle table column such as VARCHAR(2000), CLOB, or
BLOB:

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 21

Since standard Oracle cannot index into a large column, their LIKE queries cause full-
table scans, and Oracle must examine every row in the table, even when the result set
is very small. The following problems can be caused by unnecessary full-table scans:

i) Large-table full-table scans increase the load on the disk I/O sub-system
ii)Small-table full-table scans(in the data buffer cause high consistent gets and
drive up CPU consumption

The Oracle*Text utility, also called Oracle ConText and Oracle Intermedia, allows
parsing through a large text column and index on the words within the column. Unlike
ordinary b-tree or bitmap indexes, Oracle context ctxcat and ctxrule indexes are not
updated as content is changed. Since most standard Oracle databases will use the
ctxcat index with standard relational tables, the DBA must decide on a refresh interval.
 As a result, Oracle Text indexes are only useful for removing full-table scans when the
tables are largely read-only and/or the end-users do not mind not having 100% search
recall:

i) The target table is relatively static (e.g. nightly batch updates)
ii) The end-users would not mind missing the latest row data
Oracle Text works with traditional data columns as well as with MS-Word docs
and Adobe PDF files that are stored within Oracle. Oracle Text has several index
types:
iii) CTXCAT Indexes: A CTXCAT index is best for smaller text fragments that must
be indexed along with other standard relational data (VARCHAR2).

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 22

 WHERE CATSEARCH(text_column, 'ipod')> 0;
iv) CONTEXT Indexes: The CONTEXT index type is used to index large amounts of
text such as Word, PDF, XML, HTML or plain text documents.
 WHERE CONTAINS(test_column, 'ipod', 1) > 0
v)CTXRULE Indexes: A CTXRULE index can be used to build document

classification applications.

These types of indexes allow users to replace the old-fashioned SQL LIKE syntax with
CONTAINS or CATSEARCH SQL syntax.
When the query is executed with the new index, the full-table scan is replaced with a
index scan, thereby greatly reducing execution speed and improving hardware stress:
 Execution Plan
 0 SELECT STATEMENT Optimizer=FIRST_ROWS
 1 0 SORT (ORDER BY)
 2 1 TABLE ACCESS (BY INDEX ROWID) OF 'BIGTAB'
 3 2 DOMAIN INDEX OF 'TEXT-COLUMN_IDX'

www.bispsolutions.com | www.hyperionguru.com | www.bisptrainings.com |
Page 23

	Contents
	Tuning Tips#1
	Tuning Tips#2
	Tuning Tips#3
	Tuning Tips#4
	Tuning Tips#5
	Tuning Tips#6
	Tuning Tips#7
	Tuning Tips#8
	Tuning Tips#9
	Tuning Tips#10
	Tuning Tips#11
	Tuning Tips#12
	Tuning Tips#13
	Tuning Tips#14
	Tuning Tips#15
	Tuning Tips#16
	Tuning Tips#17
	Tuning Tips#18
	Tuning Tips#19
	Tuning Tips#20

